
any of the events. This is in contrast to domain-

specific monitors like the parsing monitor

described in Section 3 which placed a semantic

interpretation on recognition events.

Figure 5 shows the breakpoint monitor after the

first example breakpoint above has been set. The

user has to named the breakpoint “Line after

five”. Breakpoints can also be disabled or

deleted using this interface.

Figure 6 shows the user in the process of setting

the second breakpoint. The documentation

strings from the Dapto specification are dis-

played as aids. The text window is used to insert

the handler code. A similar interface allows

breakpoints to be altered.

The default mode of the monitor (not shown) is

to have the “Expression Handler” checkbutton

on. In this mode the user can just enter a Tcl

expression for the breakpoint condition more

closely approximating traditional breakpoint

facilities. The monitor will wrap the following

code around the expression to form the handler:

if {expression} {

return 1;

}

Other generic monitors have been constructed.

Time and frequency profiles were built using

event timestamps and counts. Similarly, event

transcripts are easily obtained and are useful in

some monitoring situations.

5 Conclusion

Tcl and Tk have enabled an extremely flexible

monitoring environment to be constructed in a

short period of time. Using Tk to build the

graphical interfaces to monitors permitted pre-

sentation ideas to be prototyped quickly. Having

Tcl as the basis of the event and data operation

mechanisms has resulted in a simple but power-

ful facility. Although detailed performance anal-

ysis is yet to be conducted, Noosa operates fast

enough to enable monitoring to be done effec-

tively. There is room for improvement in the

event generation process.

The Eli monitors have greatly improved the

development process for Eli programs. Previ-

ously users had to rely on using debuggers such

as GDB or Dbx on the Eli-generated code. This

required extensive knowledge of the internals of

this code which was either unavailable to most

Eli users or time-consuming to obtain and soon

out-of-date. Noosa allows developers of tools

used in Eli to build monitoring interfaces that

isolate monitors (and hence users) from the

details of their tools. It is now possible to moni-

tor Eli-generated programs at the level of user

specifications rather than generated code. Appli-

cation to other problem domains is showing that

the techniques have general applicability and

utility.

References

[1] B. Plattner, J. Nievergelt. Monitoring pro-

gram execution: a survey. Computer, 14(11),

pages 76-93, November 1981.

[2] A. M. Sloane. Domain-level execution moni-

toring. Ph.D. Thesis, University of Colorado,

Boulder. 1993. In preparation.

[3] R. M. Stallman, R. H. Pesch. The GNU

source-level debugger. Free Software Founda-

tion. 1993.

[4] M. A. Linton. The evolution of Dbx.

USENIX Summer Conference, pages 211-220,

1990.

[5] M. H. Brown. Algorithm animation. The

MIT Press, 1986.

[6] J. K. Ousterhout. Tcl: an embeddable com-

mand language. USENIX Winter Conference.

1990.

[7] J. K. Ousterhout. An X11 toolkit based on

the Tcl language. USENIX Winter Conference.

1991.

[8] R. W. Gray, V. P. Heuring, S. P. Levi, A. M.

Sloane, W. M. Waite. Eli: a complete, flexible

compiler construction system. Communications

of the ACM, 35(2), pages 121-131, February

1992.

[9] R. E. Griswold, M. T. Griswold. The Icon

Programming Language. Prentice-Hall. 1983.



Figure 5. Noosa Breakpoint Monitor

Figure 6. Setting a Breakpoint



build a string scanning monitor for the Icon pro-

gramming language [9]. Currently a monitor for

memory leaks in C programs is being con-

structed. Details of these monitors will appear in

[2].

4 Breakpoints

Execution control in conventional debugging

systems is performed via breakpoints [3,4]. Each

breakpoint is associated with a source code loca-

tion and possibly other information such as con-

text conditions or counts. A breakpoint triggers

when its location is reached during execution

and (say) the condition is true or decrementing

the count yields zero. Data breakpoints are vari-

ants that allow conditions to be implicitly tested

at all locations in the program at once. Usually

when a breakpoint of any kind triggers, execu-

tion is stopped or a sequence of user-defined

debugger commands are executed.

The Noosa system can be used to provide

sophisticated breakpointing capabilities.

Because Noosa is designed to hide the source

code of program components from monitors it is

not possible to attach breakpoints to source loca-

tions. Instead breakpoints are attached to event

types giving them an abstract feel.

Breakpoints can be achieved by specifying event

handlers that return one. Recall that execution of

the subject is suspended if any of the handlers

for an event return one. Thus the following han-

dler for recognition events will cause exe-

cution to stop as soon as a piece of text past line

five is recognized:

if {$linebeg > 5} {return 1}

Because handlers execute in a full Tcl interpreter

in the subject they can use any Tcl facility. For

example, they can use global variables to com-

municate. For example, the handler:

set ret 0

if {$prod == 12 && $last == 1} {

 set ret 1

}

set last $prod

return $ret

will cause a stoppage whenever production

twelve is recognized immediately after produc-

tion one. Similar techniques can be used to

implement temporary breakpoints that can only

be triggered once, or counting breakpoints that

are triggered after a set number of times. Data

breakpoints are trivial providing the monitoring

interface includes an event that represents

changes to the data of concern.

To simplify the setting of breakpoints, Noosa

provides a generic breakpoint monitor

(Figure 5). A generic monitor is one that does

not depend on the semantics of events or data

operations. The breakpoint monitor lets users

specify arbitrary handlers for events. The moni-

tor itself has no knowledge of the meaning of

event recognition “Recognition of a production during parsing”

   (int prod “Index of the production”,

    int uses “Number of preceding recognitions subsumed”,

    int linebeg “Line number of beginning of extent”,

    int colbeg “Column number of beginning of extent”,

    int lineend “Line number of ending of extent”,

    int colend “Column number of ending of extent”);

operation get_conc_prod “Retrieve text of a concrete production”

   (int index “Index of the production”): str

{

   extern char *conc_prods[];

   sprintf (interp->result, “%s”,conc_prods[index]);

}

Figure 4. Monitoring Interface for Parsing Monitor



3.1 Monitoring Interface

The Eli parser generators have been modified to

provide a simple monitoring interface that sup-

ports the parsing monitor. These changes repre-

sent less than one per cent of the code of each

tool.

A recognition event is generated whenever

a piece of input text is recognized. Also a

get_conc_prod operation provides access to

the productions in the concrete grammar used to

generate the parser. The complete Dapto specifi-

cation for this interface is given in Figure 4. The

implementation of get_conc_prod uses a

table of productions produced by the parser gen-

erator. In Figure 4 quoted strings are used for

documentation purposes (see the next section).

The handler used by the parsing monitor to react

to recognition events is:

nsend parse_recog $prod $uses \

   $linebeg $colbeg $lineend \

   $colend

This simply sends the attribute values to the

monitor where the Tcl procedure

parse_recog stores them for later use.

Other monitors have been built dealing with the

following aspects of Eli-generated programs:

string storage, lexical analysis, name analysis,

message generation, scoping, symbol table

maintenance, and semantic analysis (attribute

grammar monitoring). Domains other than Eli

have also been investigated. Noosa was used to

Figure 3. Eli Parsing Monitor



2.4 Dapto

Dapto is a tool that largely automates the genera-

tion of the domain-specific code for a subject. It

is used by the implementor of a reusable compo-

nent who must design the monitoring interface

for the component.

Dapto takes a specification of the monitoring

interface of a component and generates the nec-

essary code to implement event generation for

events in the interface and interfaces to its data

operations. Event types are specified by giving

their signatures, that is, the name of the event

type, and the names and types of its attributes.

Data operations are given by their signatures and

their bodies. The latter are arbitrary fragments of

C code to implement the operation. Normally

this C code accesses program data structures to

implement the operation. Section 4 contains an

example of a Dapto specification.

From a monitoring interface specification Dapto

generates the following:

1. A C implementation of the generate_t

function for each event type t. These func-

tions store the values of the event attributes in

global Tcl variables, call the event handlers

and either return to normal program execution

or suspend execution depending on the return

values of the event handlers.

2. C implementations of a Tcl command proce-

dure for each data operation. The implemen-

tation of an operation consists of the C code

provided in the specification augmented with

a generated test to check the validity of its

argument list.

3. Initialization code to install the data operation

command procedures into the subject’s inter-

preter as primitives.

4. Tcl code representing a database of informa-

tion about the monitoring interface. This code

is loaded by the frontend and enables it to

decide which monitors are applicable to a

subject and lets monitors display interface

information (see Section 4).

The C code generated by Dapto is compiled with

the regular code for the program to form an exe-

cutable for the subject.

3 Parsing Monitor

Eli [8] generates compilers from very high-level

specifications of their functionality. Eli incorpo-

rates two LALR(1) parser generators. This sec-

tion briefly describes a monitor for the

components generated by these tools. Because

the monitor communicates with the components

via a well-defined monitoring interface it is able

to work with the outputs of either of the tools.

Parsing is the process of determining the struc-

ture of an input text given a stream of tokens

from that input text produced by a lexical ana-

lyzer. Eli allows text structure to be described by

context-free grammars. The parsing monitor

allows the relationship between a context-free

grammar and a given input text to be monitored.

This allows incorrect structuring to be easily

diagnosed.

Figure 3 shows a typical view of the Eli parsing

monitor constructed using Noosa. Selecting a

location in the input text (lower text window)

causes the upper text window to display the con-

text-free productions (if any) that were used to

recognize that text location. In this case the high-

lighted x identifier was selected.

Displayed productions range from most general

at the top to most specific at the bottom. Thus the

first production displayed is the root of the gram-

mar. The others represent a path in the parse tree

from the root to the most-specific node repre-

senting the selected location. In this case the pro-

ductions identify the x as a Name inside a

VariableNameUse contained in a Vari-

ableAccess in an AssignmentState-

ment and so on. The underlined symbols in all

but the last production denote the left-hand side

symbol of the next production. For example, the

IfStatement shows that the following

AssignmentStatement is in the then-

clause rather than the else-clause.

Selecting a production instance in the upper win-

dow will highlight the extent in the input text

that was recognized by that production instance.



monitors and are executed by the subject. Opera-

tions can access or update program data.

The set of events and data operations supported

by a component form its monitoring interface.

The monitoring interface of a program is the

union of the monitoring interfaces of the compo-

nents from which it is constructed.

Two changes to a program are necessary to turn

it into a Noosa subject:

1. Event generation sites must be identified and

function calls inserted at those points to gen-

erate appropriate events. For an event type t,

a function generate_t is provided. Its

arguments are the attributes of the event type

(if any) and are used to distinguish between

instances of a single event type.

2. The program must be linked with extra code

containing: a Tcl interpreter, implementa-

tions of the generate_* functions, and

implementations of the data operations.

Event generation sites must be identified by

hand. Since the target software for Noosa is

based on reusable component libraries, the cost

of site identification within a component can be

amortized over many uses of the component. In

other settings tools such as compilers can auto-

matically insert event generation.

2.3 Monitors and Monitoring Interfaces

Monitors interact with the subject solely through

monitoring interfaces. Event handlers can be

installed in the subject by monitors to enable

reactions to events. Each handler is an arbitrary

piece of Tcl code that is associated with an event

type and is executed whenever events of that

type are generated. The values of event attributes

are available to each handler as global Tcl vari-

ables. If necessary, handlers can send messages

to monitors using nsend enabling displays to

be updated and so on.

To enable monitors to control the execution of

the subject, the return value of a handler is used

to determine whether or not execution should

continue after the current event generation. If

any of the handlers for an event return one, exe-

cution is stopped at the event generation site. If

all handlers return zero, execution continues.

When execution stops, a synthetic stopped

event is generated by the subject. This event can

have handlers associated with it just like

domain-specific events.

While execution is stopped, data operations can

be invoked by monitors. Each operation is

present as a Tcl procedure within the subject.

Nsend is used to transmit a call of an operation

to the subject. Once in the subject the call is exe-

cuted and its value is returned to the calling

monitor. Implementations of data operations are

given as arbitrary C code (see the next section),

so any program data can be accessed.

Two synthetic events init and finit are gen-

erated by Noosa when the subject starts and fin-

ishes execution, respectively. They enable

monitors to perform initialization and finaliza-

tion for each subject run.

Figure 2. Subject Control Window



The paper concludes with a brief consideration

of the efficiency and usability of the system.

2 Noosa

Figure 1 shows the top-level architecture of

Noosa. The programmer interacts with the fron-

tend to select appropriate monitors and interacts

with each monitor to specify desired monitoring

operations. The monitors in turn interact with the

subject during execution to implement those

operations.

The main window of the Noosa frontend is

shown in Figure 2. Immediately below the menu

bar the current status of the subject is displayed.

The “Program” entry sets the current program

name and any command-line arguments that are

to be used when it runs. The “Database” entry

sets the Noosa database for the program (see

Section 2.4). The “Monitors” pull-down menu

allows the user to create instances of available

monitors.

Three buttons give the user control over the exe-

cution of the subject. “Run” starts a new subject.

“Continue” allows continuation from a stoppage

(see Section 4). The subject can be terminated

with the “Kill” button.

2.1 Communication

All communication between the subject and the

frontend is performed at the level of Tcl code.

Both the subject and the frontend contain Tcl

interpreters. A primitive called nsend is used to

transmit an arbitrary piece of Tcl code in either

direction and return the result of evaluating it.

The functionality of nsend is the same as the

Tk primitive send but a named pipe implemen-

tation is used instead of communication via the

X server.

2.2 The Subject

When the subject is initially run it executes nor-

mally except for event generation. Events are

used to convey state change information to mon-

itors and may be generated at arbitrary points

during execution called event generation sites.

The possible events and their semantics are not

constrained by Noosa; they are chosen to match

the problem domain.

Although events are theoretically enough to con-

vey the complete state of the subject to the mon-

itors, such an approach is impractical. In many

cases it would be necessary for the monitors to

duplicate the entire state of the subject just in

case the user might be interested in some of it. In

practice the user is only interested in a small por-

tion of available information, so much work can

be wasted.

Noosa uses data operations to augment events.

These are arbitrary routines that can be called by

Subject

Monitor 1

Monitor 2

Monitor N

Frontend

Programmer

Figure 1. Noosa Architecture



Anthony M. Sloane

Department of Computer Science

Campus Box 430, University of Colorado

Boulder, CO 80303-0430, USA

tony@cs.colorado.edu

Abstract

Execution monitoring is the observation of a

program while it is running. Debugging and pro-

filing are two commonly applied forms of execu-

tion monitoring. This paper describes experience

using Tcl and Tk in the development of Noosa,

an event-based execution monitoring system.

We present an overview of the system concen-

trating on aspects that involve Tcl and Tk. Of

particular interest is the flexibility achieved by

using Tcl as the basis of both the event language

and the communication between the monitoring

subject and the monitors themselves.

1 Introduction

Execution monitoring [1] is a vital part of any

software development process. Current technol-

ogy does not permit us to construct complex

software that is guaranteed to work the first time

it is run. Even once a program performs its func-

tion correctly, it may not (say) perform it quickly

enough. Debugging is a form of execution moni-

toring concerned with obserxtng execution from

the point of view of correctness; profiling con-

siders execution with an eye on usage of

resources such as processor time or memory

space

Noosa [2] is an execution monitoring environ-

ment designed for software constructed from

reusable components. Noosa unifies ideas from

conventional debugging systems [3,4] and algo-

rithm animation [5].

We concentrate on software constructed using

reusable components such as abstract data struc-

tures, instances of abstract data types or

instances of classes. This kind of software uti-

lizes functional interfaces to insulate compo-

nents from each other. A component’s functional

interface allows other components abstract

access to its algorithms and data structures.

Implementation details such as data representa-

tions or specifics of algorithms are hidden

behind the functional interface. Components are

thus able to evolve more independently than

they could if such details were visible.

The central idea in Noosa is to isolate execution

monitors from the details of the implementation

of the subject of the monitoring. This separation

simplifies monitors and insulates them from

most changes in program components. We

define monitoring interfaces that are analogous

to functional interfaces except that they hide

component implementations from monitors

rather than from each other. In an implementa-

tion the two kinds of interfaces may be imple-

mented using the same or different mechanisms.

Noosa implements them differently because the

subject and the monitors reside in different oper-

ating system processes.

Tcl [6] plays a central role in the implementation

of Noosa over and above the fact that the moni-

tors are built using Tk [7]. Section 2 describes

the architecture of Noosa and explains how Tcl

is used to provide powerful modes of interaction

between the monitors and the subject. Section 3

illustrates this discussion with an example of a

parsing monitor constructed for the Eli compiler

construction system [8]. This is an example of a

domain-specific monitor: a monitor that provides

facilities for programs operating within a partic-

ular problem domain. In Section 4 we give an

example of a generic monitor that implements

breakpointing. Generic monitors are indepen-

dent of the domain in which the subject operates.

Noosa: Execution Monitoring using Tcl and Tk


